This information is derived from development samples made available for evaluation. It does not form pair of our data handbook system and does not necessarily imply that the device will go into production

SUPERSEDES DATA SHEET SAB1009A AUGUST 1978

WIDE-BAND LIMITING AMPLIFIER

The SAB1009B is a three-stage differential amplifier in the range 70 to 900 MHz with inherent limiting action. The differential inputs are internally biased to permit capacitive coupling and asymmetrical drive. For asymmetrical drive pin 3 should be used as an input and pin 4 should be grounded via a 56 Ω resistor and a d.c. blocking capacitor. The outputs are complementary with non-standard levels. The device is specified for a nominal supply voltage of 5 V; it may also be operated with a supply voltage of 5,2 V \pm 5%. The voltage dropping resistor RCC has then to be increased to 82 Ω .

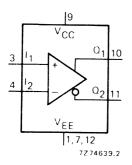


Fig. 1 Block diagram.

14	13	12	11	10	9	8
n.c.	n.c.	V_{EE}	02	Q_1	v_{CC}	n.c.
\triangleright		SA	B100	9B		
VEE	n.c.	11	12	n.c.	n.c.	V_{EE}
1	2	3	4	5	6 72	7 74638.2

Fig. 2 Pins marked n.c. should preferably be grounded or connected to supply. V_{CC} via 75 Ω to 5 V. V_{FF} = 0 V (ground).

QUICK REFERENCE DATA

The state of the s	and the second s		
Supply voltage	Vcc	5 ± 5%	V
Supply voltage dropping resistor	RCC	75	Ω
Frequency range	f _i 7	'0 to 900	MHz
Differential clipped output voltage $R_L = 50 \Omega$ at each output	$V_{o(p-p)}$ typ.	550	mV
Power consumption per package (no load)	P _{av} typ.	75	mW
Operating ambient temperature	T_{amb}	0 to + 70	оС

PACKAGE OUTLINE

14-lead DIL; plastic (SOT-27S, T, V).

The same of the sa

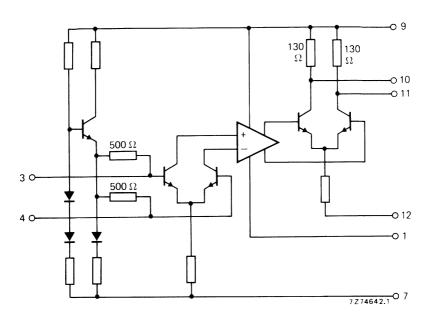


Fig. 3 Circuit diagram.

RAŢINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Supply voltage (d.c.)	v_{CC}	max.	7	٧
Input voltage	٧ _I	0 to	+ 5	٧
Storage temperature	T_{stg}	-55 to +	125	οС
Junction temperature	T_{j}	max.	125	οС

D.C. CHARACTERISTICS

 V_{CC} via 75 Ω to 5 V

The circuit has been designed to meet the d.c. specifications shown in the table below after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed-circuit board.

	symbol	pin symbol under		T _{amb} (°C)			conditions
	,	test	0	25	70		Somare.
Supply current	ICC typ.	9	_	23 30	_	mA mA	pins 3 and 4 open, no d.c. load.

A.C. CHARACTERISTICS

 V_{CC} via 75 Ω to 5 V \pm 5%; T_{amb} = 0 to + 70 ^{o}C

	symbol	pin under test	min.	typ.	max.		conditions
Frequency range	fi		70	_	900	MHz	
			26	_	-	dB dB	f _i = 70 MHz f _i = 100 MHz
Gain *	G		23 19	_	_	dB dB	f _i = 200 MHz f _i = 500 MHz
Gain variation versus	Vermonaturo de proposaciones		16	_	_	dB	f _i = 900 MHz
temperature	ΔG		_		1,5	dB	
Input voltage standing- wave ratio	VSWR	3	_	_	5		$V_{i(rms)} = 25 \text{ mV};$ $Z_{i nom} = 75 \Omega$ Source connected to pin 3; pin 4 grounded via 56 Ω in series with 10 nF.
Input voltage	V _{i(rms)}	3	_	_	150	mV	series with 10 m .

A.C. CHARACTERISTICS (continued)

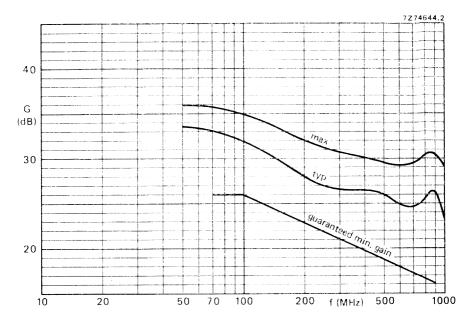


Fig. 4 Gain as a function of frequency. $V_{CC} = 5 \text{ V}$; $T_{amb} = 25 \text{ °C}$.

A.C. CHARACTERISTICS (continued)

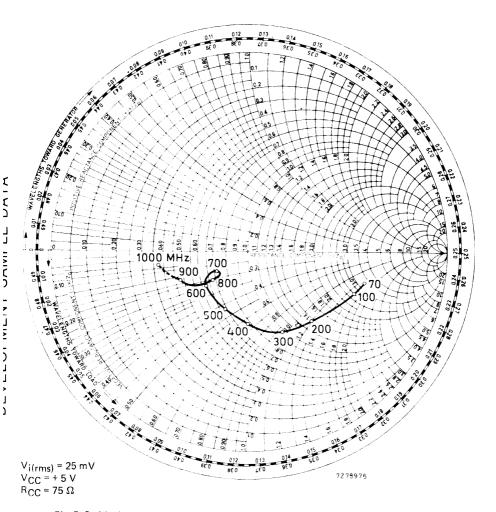
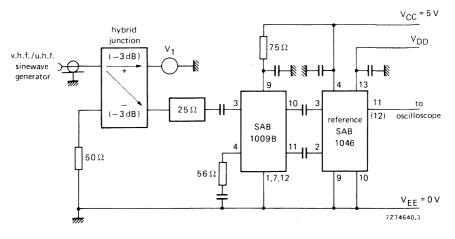



Fig. 5 Smith chart of typical input impedance at pin 3 with pin 4 terminated to ground.

Test circuit

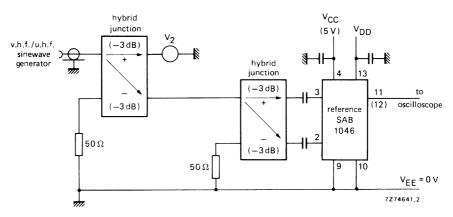
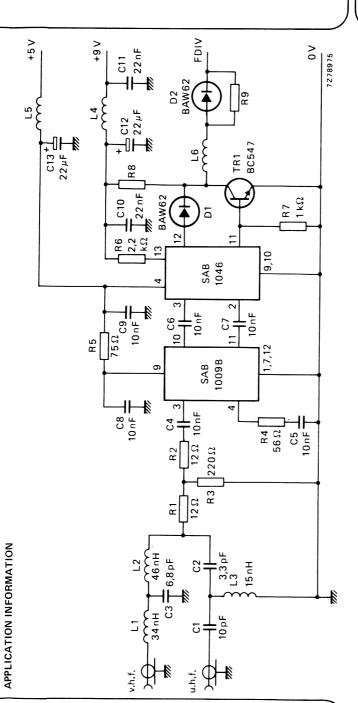


Fig. 6 Test circuits for defining gain.

 V_1 and V_2 are minimum input levels for correct operation.

Gain defined as G = 20 log
$$\frac{V_2}{V_1}$$
.

Capacitors must be leadless ceramic (value 10 nF).


Hybrid junctions are Anzac H-183-4 or similar.

Connections to the device must be kept short for proper tests.

Cables are 50 Ω coaxial cables.

mentioned are connected to ground except pin 5 of SAB1046 which is connected to VCC. Fig. 7 H.F. divider for DICS in television receivers (prescaler module). The pins not Values of R8, R9 and L6 have to be chosen in accordance with the load capacitance.

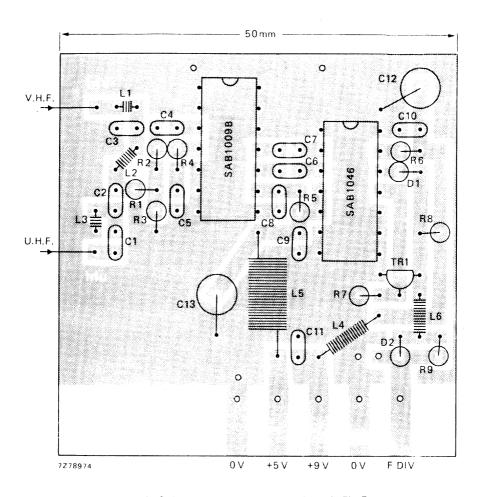


Fig. 8 Component layout of circuit shown in Fig. 7.